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Introduction

The design and analysis of mooring systems for floating offshore wind
turbines traditionally rely on constitutive models that are approxi-
mations, calibrated from experimental data, and oftenly cannot cap-
ture and predict complex behaviors under highly nonlinear load con-
ditions. In this work, we apply and investigate a novel disruptive
alternative: a data-driven computational mechanics framework for
modeling mooring lines, enhancing design reliability and operational
safety for floating offshore wind systems. In particular, we develop a
solving strategy that is a data-driven greedy optimization algorithm
based on the Alternating Direction Method, called GO-ADM, en-
abling direct utilization of experimental data and bypassing empirical
constitutive assumptions. We apply our framework to the structural
analysis of a nylon mooring line using experimental data from cyclic
loading tests conducted at industrial facilities. Our results underscore
the potential of data-centric mechanics as a disruptive technology for
next-generation offshore wind infrastructure.

Cyclic test of a nylon rope

●A nylon rope of initial length of 17.010 m.
●A cross-sectional diameter of 0.208 m.
●Cyclic tensional loading over 55 minutes with measured strains.
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Provided dataset, consisting of more than 16, 500 discrete points.
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Values of the global objective function.

Conclusions and outlook

A solving strategy, combining a greedy optimization algorithm and
the alternating direction method, GO-ADM [3,4], is introduced. Our
approach reduces the global objective function, better approximating
the global optima. This, however, comes at the expense of higher
computational cost in terms of the number of iterations and comput-
ing time. We applied and demonstrated this via a cyclic test of a
nylon rope, using real experimental dataset.
Future work includes accelerating approaches for the GO-ADM solv-
ing strategy, data initialization approaches for nonlinear systems, and
extending GO-ADM for more complex structural models, such as ge-
ometrically exact beams, shells, and solid elements.
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Nonlinear data-driven one-dimensional elasticity

Consider a bounded domain Ω ⊂ R and a physical body that occupies the closure Ω̄, which is represented as a
one-parameter curve φ = φ(ξ) ∈ R2, where ξ ∈ [0, L0] is the arc-length coordinate. Let u ∈ H1

0(Ω), e ∈ L2(Ω),
s ∈ L2(Ω) denote the displacement, axial strain, and stress fields, respectively, λ ∈H1

0(Ω), µ ∈ L2(Ω) the dual fields
of Lagrange multipliers. Let Θ define the enforcement of the equilibrium and the compatibility conditions using
Lagrange multipliers:

0 = Θ (z, x; f) ∶= ⟨λ, BTs − f⟩L2(Ω) + ⟨µ, ϵ(u) − e⟩L2(Ω) ∀ z ∈ Z ,

with x ∶= (u, e, s) ∈X ∶=H1
0(Ω) × L2(Ω) × L2(Ω) ,

y ∶= ( e, s) ∈ Y ∶= L2(Ω) × L2(Ω) ,
z ∶= (λ, µ) ∈ Z ∶=H1

0(Ω) × L2(Ω) .

(1)

In this work, we consider the following displacement-based strain and corresponding strain-displacement operator:

ϵ(u) =Φ′ ⋅u′ + 1
2
α u′ ⋅u′ , B(⋅) =Φ′ ⋅ (⋅)′ + α u′ ⋅ (⋅)′ , α ∈ {0, 1} , (2)

respectively, where Φ =Φ(ξ) denotes the reference configuration of the physical body, which relates to the current
configuration as φ =Φ+u. Here, α is a factor that has either a value of 0 or 1 to neglect or consider the nonlinear
term in the definition of ϵ(u), respectively. Consider a given closed data set of stress-strain pairs D. One can
construct the corresponding strain and stress fields from D as follows:

D ∶= {ỹ ∶= (ẽ, s̃) ∈ L2
×L2 ∶ (ẽ(ξ), s̃(ξ)) ∈D ∀ ξ ∈ Ω} . (3)

The static structural analysis of the physical body can be formulated as a discrete-continuous quadratic optimization
problem [1,2] as follows: Find x ∈X such that:

inf
x, ỹ

sup
z∈Z

distG (y, ỹ) + Θ (z, x; f) s.t. ỹ ∈ D ,

with distG (y, ỹ) ∶= c

2
∣∣e − ẽ∣∣2L2(Ω) +

1
2c
∣∣s − s̃∣∣2L2(Ω) ,

(4)

where c is a constant weighting scalar to ensure unit consistency. Here, distG(⋅, ⋅) denotes the global objective func-
tion. The first-order necessary optimality conditions (Karush-Kuhn-Tucker (KKT) conditions) state the resulting
stationary problem as follows: Given a fixed ỹ = (ẽ, s̃) ∈ D:

0 = δ (distG (y, ỹ) +Θ (z, x; f)) = g(q) , (5)

where qT = [uT e s µ λT]T . To tackle Eq. (5), we employ the Newton-Raphson and finite element method. For
the explicit expression of (5), the resulting spatially discrete problem, and the final matrix equations, we refer to
[3], which also includes further discussions.

GO-ADM-solver
Input: solution guess q0, initial selected data ỹ0, dataset D, external force vector f
Output: q, ỹ∗

1: q, ỹ = ADM-solver (q0, ỹ0, f , D) ▷ First results, using standard solver [1]
2: dist(0) = distG (ŷ, ỹ) ▷ Evaluate global objective function
3: k = 0 ▷ Number of “greedy” searches
4: while k ≤ kmax do ▷ “Greedy” search algorithm
5: di = distE (ŷi, ỹi), i = 1, . . . , M ▷ Evaluate element objective function
6: Ξ = sort(d1, . . . , dM) in descending order
7: for i in Ξ do
8: k+ = 1; ỹn = copy(ỹ) ▷ Copy ỹ in new ỹn

9: dj = distE (ŷi, ỹj), j = 1, . . . , nD

10: q, p = argmin (d1, . . . , dnD
) ▷ Indices of 2 best alternatives to ỹi

11: if ỹn
i ≠ ỹq then

12: ỹn
i = ỹq ▷ Try the best alternative.

13: else
14: ỹn

i = ỹp ▷ Try the 2nd-best alternative.
15: end if
16: q, ỹn = ADM-solver (q0, ỹn, f , D) ▷ Recompute with new ỹn

i in ỹn

17: Collect ŷ from q
18: dist(k) = distG (ŷ, ỹn) ▷ Reevaluate global objective function
19: if dist(k) < dist(k−1) then
20: ỹi = ỹn

i ; break ▷ Overwrite the current element data pair. Switch to line 4.
21: end if
22: end for
23: end while
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